Chemosuppression of Retinal Axon Growth by the Mouse Optic Chiasm

نویسندگان

  • Li-Chong Wang
  • Rivka A Rachel
  • Riva C Marcus
  • Carol A Mason
چکیده

To determine whether diffusible guidance cues direct retinal axon growth and divergence at the optic chiasm, we cocultured mouse retinal and chiasm explants in collagen gels. The chiasm reduced retinal neurite lengths and numbers, but did not affect commissural or pontine neurite growth. This reduction in growth was equal for all retinal quadrants and occurred without reorienting the direction of neurite extension. The floor plate, another midline guidance locus, also suppressed retinal neurite outgrowth, whereas cortex or cerebellum explants did not. Growth suppression was not mediated by netrin-1, which instead enhanced retinal neurite extension. We propose that chemosuppression may be a general guidance mechanism that acts in intermediate targets to prime growth cones to perceive other, more specific cues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossed and uncrossed retinal axons respond differently to cells of the optic chiasm midline in vitro

In mouse, retinal axon divergence takes place within a cellular specialization localized at the midline of the optic chiasm. To test whether the cells in this locus present cues for differential retinal axon growth, retinal explants were cocultured with cells dissociated from the chiasmatic midline, both taken from day 14-15 embryos, during the principal period of retinal axon divergence. Compa...

متن کامل

Embryonic neurons of the developing optic chiasm express L1 and CD44, cell surface molecules with opposing effects on retinal axon growth.

The first retinal ganglion cell axons arriving at the embryonic mouse ventral diencephalon encounter an inverted V-shaped neuronal array defining the midline and posterior boundaries of the future optic chiasm. These neurons express L1, an immunoglobulin superfamily molecule known to promote retinal axon outgrowth, and CD44, a cell surface molecule that we find inhibits embryonic retinal axon g...

متن کامل

Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity.

Mammalian binocular vision relies on the divergence of retinal ganglion cell axons at the optic chiasm, with strictly controlled numbers projecting contralaterally and ipsilaterally. In mouse, contralateral projections arise from the entire retina, whereas ipsilateral projections arise from ventrotemporal retina. We investigate how development of these patterns of projection is regulated by the...

متن کامل

Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43.

Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC a...

متن کامل

The optic chiasm as a midline choice point.

The mouse optic chiasm is a model for axon guidance at the midline and for analyzing how binocular vision is patterned. Recent work has identified several molecular players that influence the binary decision that retinal ganglion cells make at the optic chiasm, to either cross or avoid the midline. An ephrin-B localized to the midline, together with an EphB receptor and a zinc-finger transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1996